
Jennifer Nappier and Joseph Downey
Glenn Research Center, Cleveland, Ohio

Dale Mortensen
ASRC Aerospace Corporation, Glenn Research Center, Cleveland, Ohio

STRS Compliant FPGA Waveform Development

NASA/TM—2008-215297

October 2008

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 301–621–0134

• Telephone the NASA STI Help Desk at
 301–621–0390

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Jennifer Nappier and Joseph Downey
Glenn Research Center, Cleveland, Ohio

Dale Mortensen
ASRC Aerospace Corporation, Glenn Research Center, Cleveland, Ohio

STRS Compliant FPGA Waveform Development

NASA/TM—2008-215297

October 2008

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
Software Defi ned Radio Technical Conference and Product Exposition 2008 (SDR 08)
cosponsored by the General Dynamics C4 Systems, Harris, Motorola, PrismTech, Xilinx, and Zeligsoft
Washington, D.C., October 26–30, 2008

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Level of Review: This material has been technically reviewed by technical management.

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

This report contains preliminary fi ndings,
subject to revision as analysis proceeds.

This report is a preprint of a paper intended for presentation at a conference.
Because changes may be made before formal publication, this preprint is made available

with the understanding that it will not be cited or reproduced without
the permission of the author.

NASA/TM—2008-215297 1

STRS Compliant FPGA Waveform Development

Jennifer Nappier and Joseph Downey
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Dale Mortensen

ASRC Aerospace Corporation
Glenn Research Center
Cleveland, Ohio 44135

Abstract
The Space Telecommunications Radio System (STRS)

Architecture Standard describes a standard for NASA space
software defined radios (SDRs). It provides a common
framework that can be used to develop and operate a space
SDR in a reconfigurable and reprogrammable manner. One
goal of the STRS Architecture is to promote waveform reuse
among multiple software defined radios. Many space domain
waveforms are designed to run in the special signal processing
(SSP) hardware. However, the STRS Architecture is currently
incomplete in defining a standard for designing waveforms in
the SSP hardware. Therefore, the STRS Architecture needs to
be extended to encompass waveform development in the SSP
hardware. The extension of STRS to the SSP hardware will
promote easier waveform reconfiguration and reuse. A
transmit waveform for space applications was developed to
determine ways to extend the STRS Architecture to a field
programmable gate array (FPGA). These extensions include a
standard hardware abstraction layer for FPGAs and a standard
interface between waveform functions running inside a FPGA.
A FPGA-based transmit waveform implementation of the
proposed standard interfaces on a laboratory breadboard SDR
will be discussed.

1. Introduction
The Space Telecommunications Radio System (STRS)

Architecture Standard (ref. 1) specifies an open architecture
for NASA space software defined radios (SDRs). The STRS
Architecture Standard divides the SDR into three functional
hardware modules – the general processing module (GPM),
the radio frequency module (RFM), and the signal processing
module (SPM). There is a hardware interface description
(HID) between each module that describes all of the physical
hardware interfaces. The GPM contains a general purpose
processor (GPP), memory, and the Spacecraft Telemetry
Interface. The GPM runs the STRS Infrastructure and
configures and controls the entire radio. The RFM contains
filters, up/down converters, power amplifiers, digital to analog
converters (DACs), and analog to digital converters (ADCs).
It handles the conversion between the radio frequency (RF)
and the intermediate frequency (IF) signals. The SPM may

contain a field programmable gate array (FPGA), digital signal
processor (DSP), application specific integrated circuit
(ASIC), or other specialized signal processing (SSP) device.
The SPM performs the transformations between the IF
digitally sampled signals and the data packets. These
transformations are currently the reconfigurable part of the
SDR waveforms. A drawing of the functional hardware
modules of the STRS Architecture is shown in figure 1.

It is desirable to place a space waveform in the FPGA due
to the reconfigurable nature of the device and the ability to
support high digital data rates. However, the STRS
Architecture only specifies high-level standards for
waveforms developed in the FPGA. In order to explore
extending the STRS Architecture to lower level standards for
the FPGA, a transmit waveform for space applications was
developed. This development has lead to initial concepts for
developing a firmware-based STRS compliant waveform that
is reconfigurable and reusable. These concepts are the first
steps towards extending the STRS Architecture standard to the
firmware inside the FPGA.

A brief outline of the rest of the paper follows. The
development goals for the waveform will be discussed in
section 2. The current STRS Architecture’s support of these
goals is discussed in section 3. Section 4 describes proposed
extensions to the STRS Architecture that more fully support
STRS goals, and section 5 discusses lab-based
implementations of the extensions. Finally, section 6 describes
future work.

2. Waveform Development Goals
2.1. Design a waveform that is reconfigurable

Reconfigurability is the ability to modify functionality of a
radio by changing the operational parameters without
requiring a software update. One reason to reconfigure a space
SDR may be in response to changes in environmental or
physical conditions experienced by the spacecraft. Another
need for SDR reconfiguration is that the same communication
network might use several variations of one waveform to
perform different operations (e.g., different phases of a
mission or modes of spacecraft operations). There could be
little or no operational down time during reconfiguration.

NASA/TM—2008-215297 2

Figure 1.—STRS Hardware Architecture Diagram.

2.2. Design a waveform that is reusable and portable
across different SDRs

Reusability is the degree to which a software module or
other work product can be used in more than one computing
program or software system. The number of waveforms being
used by NASA is limited and unlikely to increase or
dramatically change. Reusing all or part of the code for this
limited number of waveforms will decrease development time
and cost and increase reliability. It is desired that both the
individual waveform functions and the entire waveform as a
whole be reusable. A waveform developer should be able to
port individual waveform functions between SDR platforms.
This might include replacing individual functions in a
waveform, or reusing individual functions across several
waveforms. A waveform developer should also be able to
easily port entire waveforms to many different SDR platforms.

2.3. Design a waveform that is platform independent

One way to promote waveform reusability is to start with a
platform independent design methodology. The highest level
of abstraction of the waveform design should be platform
independent. This might be a platform independent simulation
tool model, or HDL code that is written in a platform
independent manner.

3. Current STRS Architecture Standard
The current STRS Architecture Standard enables many of

the waveform design goals listed in section 2 to be achieved.
The STRS Architecture is more defined for the GPM than the
SPM. This section describes how the current software and

firmware sections of the architecture enable the waveform
design goals to be met, but also points out some shortcomings.

The software section of the STRS Architecture Standard
specifies a common way to reconfigure waveform parameters
on a space SDR without waveform reloading. The STRS
Infrastructure running on the GPP specifies the use of STRS
Application Program Interface (API) calls. These STRS API
calls utilize device drivers on the GPP which interface to
corresponding devices on the SPM or RFM. These APIs
include the STRS_DeviceRead, STRS_DeviceWrite,
STRS_DeviceGetAttribute, and STRS_DeviceSetAttribute
APIs. They can be used to control and reconfigure the
waveform components that reside in the FPGA.

The software section of the STRS Architecture Standard
supports the ability to remotely reprogram a compliant SDR
with a different compliant waveform. The STRS_LoadDevice
API can load a bit file that has been sent to a radio onto a
FPGA or other device. In this way, a new waveform can be
remotely loaded onto a FPGA.

The software section of the STRS Architecture Standard
specifies standard APIs that interface to waveform functions
running on the GPP. Therefore, code that is written on the
GPP is portable and reusable across different SDRs. Software
is platform independent because it is written in a high-level
language like C.

The firmware section of the STRS Architecture Standard
supports the use of model based firmware design techniques.
Models can be developed using platform independent design
techniques, but they could also be platform specific. The
firmware architecture also supports the use of modularity and
clear interfaces in waveform design and modeling. However,
the firmware architecture does not define these interfaces in
detail.

The firmware section of the STRS Architecture Standard
supports reusable firmware-based waveforms through the use
of a common waveform library. It also specifies an internal
HID and an external HID. Device drivers are used to interface
to the internal and external HID. The internal HID is an
interface between devices on the SPM. The external HID is a
set of interfaces from each device on the SPM to the GPM and
RFM. However, these interfaces are not specifically defined.
Waveforms could be more reusable and portable if a common
interface would be defined.

4. Proposed Extensions to STRS
There are two proposed extensions to the STRS

Architecture Standard to further promote waveform portability
and reuse. The proposed extensions were developed from the
experience of designing a transmit waveform for space
applications. The extensions are a Waveform Function
Interface (WFI) and a Firmware Developer Interface (FDI).
The WFI defines interfaces between waveform functions. The
FDI abstracts the device drivers between the waveform
application and devices external to FPGA, presenting a

NASA/TM—2008-215297 3

Figure 2.—Conceptual drawing of the Firmware Developer
Interface and the Waveform Function Interface in the FPGA.

standard interface to the firmware-based waveform functions.
A conceptual drawing of the FDI and WFI on the FPGA is
shown in figure 2. The FDI and WFI could be extended to
other non-FPGA SPM devices, but the focus of this paper is
on standardization in FPGAs.

4.1. Waveform Function Interface

The reuse of individual waveform functions was
accomplished in this waveform development by two design
practices. The waveform was divided into functions that were
visible at the top level of the design. Next, these functions
were separated from each other by common interfaces. The
example of a modulator function, shown in figure 3,
demonstrates these interfaces. These interface definitions will
allow a future user to easily reuse the function.

To aide in waveform reconfiguration, each individual
waveform function was designed to accommodate all desired
permutations of operation. Control over these permutations is
achieved through a control signal, as shown in figure 3. The
waveform controller, which manages the state and behavior of
the waveform, has access to all such control signals and can
change them in real time. The enable signal shown in figure 3
is a specific instance of a control signal. Thus the functionality
of the SDR can be quickly reconfigured by properly
controlling these signals without reprogramming the SDR with
a new waveform.

These common interface definitions are proposed to be
called the Waveform Function Interface (WFI). A standard
WFI will promote modularity and enable waveform function
reuse. It will allow individual waveform functions to be both
ported to different platforms and reused among different
waveforms. A critical component of the WFI is extensive

Figure 3.—Example waveform function.

documentation of all signals. Expected information on each
signal includes data types, bit widths, and active low or active
high for a control signal. There are other proposed signals in
addition to the signals shown in figure 3. The proposed WFI is
described in table 1.

TABLE 1.—WAVEFORM FUNCTION INTERFACES
Waveform function interfaces

Direction Signal Description
IN Data Input data
IN Clock Directed to the function from the

clock manager

IN Enable Specific type of control signal
IN Reset Specific type of control signal
IN Control(s) Signal from controller or another

function
OUT Data Output data
OUT Control(s) Status signals about function state or

control signals going to another
function

4.2. Firmware Developer Interface

There are several design practices that were used to
promote reuse of the entire waveform. First, the waveform
was designed in a development environment that is FPGA
platform independent. Platform specific VHDL that could
target any FPGA was auto-generated from this platform-
independent design using commercial software design tools.
Therefore, this waveform development focused on algorithm
development and the design tool automatically optimized area
and speed constraints for the target FPGA. Next, the
waveform was designed to contain minimal external interfaces
to resources outside the FPGA. Limiting the waveform
dependency on SDR platform hardware devices external to the
FPGA enables reuse across many different STRS compliant
SDR platforms.

Another way to minimize waveform dependency on devices
external to the FPGA is to define a set of common external
interfaces. The proposed set of common external interfaces is
called the Firmware Developer Interface (FDI). The FDI is a
common set of interfaces, but the implementation of those
interfaces is not specified. The implementation and
documentation of the FDI is the platform designer’s

NASA/TM—2008-215297 4

responsibility. The waveform designer will use the FDI to
access radio platform devices outside the FPGA.

There are two types of FDIs proposed: the control FDI and
the data FDI. The control and data FDIs have the capability to
both read from and write to devices external to the FPGA.

The control FDI provides a control interface into the FPGA.
A waveform controller running on another device, such as the
GPP, would use this interface to control the waveform
functions running in the FPGA. This control interface is
currently defined for the situation in which the GPP is the
master and the FPGA is the slave. The control interface
consists of data, address, clock, and enable signals. The data
address (DATA, ADDRESS) pairs in the FDI should
correspond to the name value (NAME, VALUE) pairs in the
STRS_DeviceRead, STRS_DeviceWrite, STRS_DeviceGet-
Attribute, and STRS_DeviceSetAttribute APIs on the GPP.
The proposed control FDI signals are shown in table 2. The
proposed common FDI DATA and corresponding API NAME
pairs are shown in table 3.

TABLE 2.—CONTROL FDI SIGNALS
Control FDI

Read
Direction Name

IN ControlRDY
IN Address
IN Data
OUT Clock

Write
Direction Name

IN ControlRDY
IN Address
OUT Data
OUT Clock

TABLE 3.—CORRESPONDING FDI DATA AND API

NAME PAIRS
FDI DATA API NAME

FDI_START/STOP API_ START/STOP
FDI_DATA_RATE API_ DATA_RATE
FDI_DATA_FORMAT API_ DATA_FORMAT
FDI_MODULATION API_ MODULATION
FDI_IF API_ IF
FDI_CODING API_ CODING
FDI_AGC_GAIN API_ AGC_GAIN
FDI_FUNCTION_ENABLE API_ FUNCTION_ENABLE
FDI_FUNCTION_RESET API_ FUNCTION_RESET

The data FDI is an interface to a hardware device where a

continuous data stream is needed. The data FDI signals can be
used with or without handshaking signals. The minimum data

FDI signals without handshaking are proposed to be data,
clock, and enable, as shown in table 4. Handshaking signals
for the data FDI will be defined in the future. It is up to the
waveform developer to choose the type of signals to use, but
both the minimum signals and handshaking signals must be
implemented by the platform provider.

TABLE 4.—DATA FDI SIGNALS

Data FDI
Read

Direction Name
IN Data
OUT Enable
OUT Clock

Write
Direction Name

OUT Data
OUT Enable
OUT Clock

There should also be a standard set of interfaces to the

clock manager on the FPGA. The clock manager generates the
clocks that are used in the FPGA. These interfaces are not
defined in this paper, but their documentation by the platform
provider is part of the proposed extension.

5. Implementation Examples
The WFI and the FDI have both been implemented in the

lab. The WFI has been implemented on a transmit waveform
and the FDI has been implemented on a FPGA in a space
software defined radio. However, they have not yet been
integrated together on one radio.

5.1. Waveform Function Interface

Figure 4 shows a top level block diagram of the transmit
waveform that was implemented. The waveform is separated
into functions at the highest level of abstraction. The WFI is
defined in between these functions. The WFI signals that were
implemented include the data, clock, control, and enable
signals.

Table 5 lists example documentation for the WFI signals
that were implemented in the convolutional encoder function
of the transmit waveform shown in Figure 4. The input clock
rate is 2 MHz. The input data signal is 1 bit in width, has a rate
of 1 Mbps, and has symbols formatted as NRZ-L. The control
signal is 1 bit in width. It allows for 1/2 rate convolutional
encoding or no encoding of the input signal. The input/output
enable signal is active high. The output data signal is 1 bit in
width, has a rate of 2 Mbps, and has symbols formatted as
NRZ-L.

NASA/TM—2008-215297 5

Figure 4.—Waveform Implementation with the Waveform Function Interface.

Figure 5.—Implementation example of the Firmware Developer Interface.

TABLE 5.—WAVEFORM FUNCTION INTERFACES FOR
THE CONVOLUTIONAL ENCODER

Convolutional encoder waveform function interfaces
Direction Signal Description

IN Data 1 bit, 1 Mbps, NRZ-L symbols
IN Clock 2 MHz
IN Enable Active high
IN Controls 0 – No encoding

1 – ½ Rate encoding
OUT Data 1 bit, 2 Mbps, NRZ-L symbols
OUT Enable Active high

5.2. Firmware Developer Interface

The control and data FDIs have been implemented on a
space SDR breadboard. The FDI has been implemented to
replace the platform specific wrapper supplied by the platform
vendor, so that there is not an impact on performance. Test
functions have been created to use the FDI to interface with
components on both the GPM and the RFM. A diagram of the
interfaces that were implemented is shown in figure 5.

The interface to the GPM was more difficult to implement
because the GPM HID consisted of an address bus and a data
bus, but the FDI was implemented to abstract the HID from

NASA/TM—2008-215297 6

the firmware as a control read/write and a data read/write. The
control read interface was implemented using an asynchronous
first in first out (FIFO) memory. The test waveform
application in the FPGA could read a data address pair when
the ControlRDY signal was asserted. The control write signal
could not be implemented with a FIFO because of the GPP
master FPGA slave data flow configuration. When the
ControlRDY signal was asserted, the waveform application
would place the data that corresponded to the requested
address on the bus. The data read/write functions were
implemented with asynchronous FIFOs. The enable signals
indicated when a read or write operation was performed.
Although these interfaces were implemented as separate
interfaces to the firmware developer, the actual HID between
the FPGA and the GPP consisted of a single common address
and a data bus.

The interface to the ADC and DAC was very simple to
implement. The enable signal indicated when the read or write
was performed. The devices were also given a clock signal.
The FDI implementation did not address ADC/DAC bit width
variations. However, in the future a variable bit width control
parameter could be added to the FDI.

The clocks that were generated by the clock manager were
fed into the test waveform application for use by the
waveform. However, the test waveform did not control the
clock rate. It simply used the provided clocks as necessary.

6. Future Work
The proposed additions to the STRS Firmware Architecture

Standard are the WFI and the FDI. The WFI is a set of
common interfaces between waveform functions on the
FPGA. The FDI is a common set of external firmware
interfaces to devices outside the FPGA. The FDI on the FPGA
and the WFI in the waveform have been implemented and
tested separately. The integration of the two implementations
is the next step. Plans are to target the platform on which the
working FPGA FDI is implemented with the WFI-based
transmit waveform. The ability to reconfigure the FPGA using
the WFI and FDI will be demonstrated using controls from the
STRS Infrastructure in the GPP. The FDI will then be
implemented on another SDR platform and the waveform
ported to that second platform. This will test and demonstrate
how the proposed extensions to the STRS Firmware
Architecture Standard enable waveform reusability,
portability, and reconfiguration.

References
1. National Aeronautics and Space Administration,

Headquarters, Space Telecommunications Radio System
STRS Open Architecture Standard 1.0, Washington D.C.,
April 2006.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
01-10-2008

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
STRS Compliant FPGA Waveform Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 439432.04.07.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-16566

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORS
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2008-215297

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 17
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios
(SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable
manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain
waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in
defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass
waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration
and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field
programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface
between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces
on a laboratory breadboard SDR will be discussed.
15. SUBJECT TERMS
Waveform; Space communication; Software reuse; Firmware

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

12

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
301-621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

